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Abstract. Targeted contrail avoidance consists of rerouting aircraft to minimise the formation of contrails whose warming of

the climate system can be much larger than that due to the CO2 emitted for some of the flights. A commonly proposed strategy

is to reroute all flights for which the trade-off between additional CO2 emissions and reduction in contrail warming leads

to a climate benefit. However, current predictions of contrail climate impact are highly uncertain. In this study, we describe

a framework to integrate the risk of unintentionally damaging the climate in the contrail avoidance decision-making process,5

using the Contrail Cirrus Prediction model (CoCiP) and operational ensemble weather forecasts. Optimising trajectories around

a best estimate of contrail radiative forcing then including weather and parametric uncertainties in that predicted forcing in a

second step reveals that 55% of the reroutings have a higher-than-5% risk of unintentionally damaging the climate compared

to a standard risk-unaware avoidance strategy. This fraction increases to 76% when choosing to reject any risk. However, the

reroutings that are the least risky to operate are also those with the highest potential climate benefit, often referred to as ‘big10

hits’. Alternatively, accounting for uncertainties from the start of trajectory optimisation allows to mitigate the risk directly

when planning the flight. This strategy would even result in a 52% higher potential climate benefit compared to the risk-

unaware avoidance strategy, when choosing to reject any risk. Our results thus demonstrate that the risk of unintentionally

damaging the climate can and should be included in the decision-making of contrail avoidance, in particular in the context of

early adoption policies.15

1 Introduction

Aviation was responsible for about 2.4% of the total anthropogenic CO2 emissions in 2018 (ICCT, 2018; Klöwer et al., 2021;

Jaramillo et al., 2023). However, its climate impact also originates from non-CO2 effects, such as the formation of condensation

trails (contrails), NOx emissions, or stratospheric H2O emissions (Brasseur et al., 2016; EASA, 2020). Including such effects,

the contribution of aviation to the total anthropogenic effective radiative forcing (ERF), an integrated climate impact indicator,20

is about 3.5% for the period 1940 to 2018 (Lee et al., 2021). The ERF of non-CO2 effects from aviation is estimated to be

twice that of CO2, with contrails having the largest contribution. However, it is also associated with a significant uncertainty,

with an ERF lying between half and three times that of CO2. Contrails are formed in the wake of aircraft when specific weather

conditions are met (Schumann, 1996) and persist when they are formed in ice supersaturated regions (ISSRs), where saturation

with respect to ice exceeds 100% (Gierens et al., 2012). Depending on the properties of the aircraft and fuel, and on the weather25
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conditions, persistent contrails can evolve into contrail cirrus within a few hours, leading to a substantial warming potential

(Burkhardt and Kärcher, 2011; Kärcher, 2018).

Although the efforts to reach CO2 emissions reduction targets should be prioritised (Lee et al., 2023), reducing the non-CO2

effects at the cost of slightly increased CO2 emissions should be beneficial for the climate overall (Prather et al., 2025; Smith

et al., 2025; Johansson et al., 2025). Two main strategies have been proposed and tested to reduce the impact of contrails30

without waiting for technological improvements, namely the reduction of aircraft soot number emissions (Burkhardt et al.,

2018; Voigt et al., 2021; Märkl et al., 2024; Quante et al., 2024) and contrail avoidance (Mannstein et al., 2005; Rosenow

et al., 2018; Molloy et al., 2022). The latter strategy may consist of strictly avoiding the formation of all persistent contrails,

whether they are strongly or slightly warming (Sausen et al., 2024; Sonabend-W et al., 2024), or may focus on avoiding the

formation of the most warming contrails, an approach known as targeted contrail avoidance (Grewe et al., 2017; Martín Frías35

et al., 2024; Simorgh and Soler, 2025). Avoiding the formation of all persistent contrails implies that all flights forming such

contrails should be rerouted, representing about 20% of all flights (Teoh et al., 2024a). On the contrary, avoiding only the most

warming contrails limits the impact of contrail avoidance onto air traffic management, as only about 2–5% of the flights are

responsible for 80% of the forcing of contrails (e.g., Teoh et al., 2024a), drastically reducing the number of flights that need to

be rerouted.40

Avoiding the formation of contrails comes with an additional financial cost, because flights must be deviated from their

cost-optimal route (Niklaß et al., 2019; Matthes et al., 2020; Yamashita et al., 2021). In most cases, this leads to increased fuel

consumption and fuel-related emissions such as CO2 and NOx. Balancing the corresponding additional warming impact with

the avoided warming impact from suppressing the contrail effect requires estimating these effects as accurately as possible

(Irvine et al., 2014; Borella et al., 2024). Different models have been developed to predict the forcing of potentially formed45

contrails (Fritz et al., 2020; Yin et al., 2023; Jafarimoghaddam and Soler, 2025). Amongst them, the Contrail Cirrus Prediction

model (CoCiP; Schumann, 2012) has been widely used in different studies investigating contrail impact and contrail avoidance

(e.g., Teoh et al., 2024a; Sonabend-W et al., 2024; Martín Frías et al., 2024). It is also the model used for reporting the forcing of

formed contrails by aircraft departing from and arriving within the European Union, in the framework of the aviation non-CO2

Monitoring, Reporting, Verification (MRV) scheme (Niklaß et al., 2024).50

Targeted contrail avoidance relies primarily on flight planning as it determines the optimal trajectory that balances oper-

ational constraints and costs with contrail formation and climate impact, as described in studies that assessed the potential

gain of contrail avoidance (Grewe et al., 2017; Martín Frías et al., 2024; Simorgh and Soler, 2025). These studies include no

decision-making on whether a flight should be deviated from its cost-optimal route, instead assuming the proposed climate-

optimal trajectory is always flown. However, the prediction of the climate impact of individual contrails is highly uncertain,55

which may influence the decision-making on a flight-by-flight basis (Teoh et al., 2020; Platt et al., 2024; Engberg et al., 2025).

This uncertainty stems from, but is not limited to, the parameters of the CoCiP model (Schumann et al., 2012; Platt et al., 2024),

its structural limitations (Akhtar Martínez and Jarrett, 2024; Akhtar Martínez et al., 2025), the meteorological data (Gierens

et al., 2020; Wolf et al., 2025), or the climate efficacy of contrails (Bickel et al., 2025). Because of these uncertainties, the pre-

dicted climate benefit of avoidance may be over- or underestimated. In some cases, the trade-off between fuel-related emissions60
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and contrail impact that is predicted to be beneficial for the climate could in fact be damaging. Such a risk of unintentionally

damaging the climate may affect the decision as to whether a flight should be rerouted to avoid contrails, in particular in the

context of a no-regret avoidance policy whereby unintended climate damage is to be avoided such that the risk must be 0%.

While the previous targeted contrail avoidance approach minimise the overall climate impact of a fleet, it does not inform on

such a risk on a flight-by-flight basis. Simorgh et al. (2024b) did integrate weather uncertainties in their optimisation process65

such that the uncertainty in their predicted climate impact can be minimised, but it is not clear how their method affects the

risk of unintentionally damaging the climate for individual flights.

In this study, we describe a framework to integrate the risks of unintentionally damaging the climate in the rerouting decision-

making. The impact of such risk-aware contrail avoidance strategies are assessed against a strategy that does not integrate such

risks. The uncertainties used to estimate the risks are only those stemming from the CoCiP parameters and from the weather70

forecast. The other sources of uncertainty are not included because they are difficult to quantify on a flight-by-flight basis

at this stage, but we emphasise that they would have to be addressed before large-scale operational contrail avoidance is to

be implemented. In this context, the risk-aware contrail avoidance strategies are described in Section 2, and the datasets and

tools that we use in Section 3. Section 4 explains the calculation of the risk of unintentionally damaging the climate using

two case studies and how decision-making is affected. Broadening the analysis from a single flight to an ensemble of flights is75

investigated in Section 5. Section 6 investigates a risk-aware strategy directly integrated within the flight planning process and

shows its potential in terms of climate benefit. Finally, Section 7 discusses the results and concludes the study.

2 Description of the risk-aware contrail avoidance strategies

We describe three ways to manage weather and contrail prediction uncertainties in climate optimisation of aircraft routes. The

most straightforward contrail avoidance strategy is to consider that the prediction of the climate impact is perfect, estimated80

from a deterministic weather forecast and the nominal configuration of CoCiP, without considering any uncertainty on these

two components (e.g., Martín Frías et al., 2024). The cost climate-optimal route can then be determined, and the aircraft flies

this route as long as the climate benefit is positive, which should be ensured by the optimisation process (Fig. 1, risk-unaware

strategy). The main interest of this strategy is that its operational implementation is easy, as current flight planning systems

operate in a similar way. Moreover, the calculations are very cheap. However, it does not integrate the risk of unintentionally85

damaging the climate, and we name this strategy the risk-unaware strategy in consequence.

This strategy can be improved without disrupting too significantly operational flight planning processes by including in the

workflow one additional step related to the risk of unintentionally damaging the climate (Fig. 1, risk-informed strategy). Rather

than providing only one cost climate-optimal route, the cost-optimal route is also calculated. From the estimation of contrail

climate impact uncertainties, the risk of unintentionally damaging the climate can be estimated. If this risk is above a given90

threshold, fixed by the airline policy, the aircraft is not rerouted and flies the cost-optimal route. Else, it flies the new, cost

climate-optimal route. This strategy has the advantage of being cheap in terms of computational cost, and mostly of being
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Risk-unaware strategy
 

One route,
one forecast

Flight optimisation using 
ensemble forecast and 
nominal CoCiP 
configuration

Estimate the risk of 
unintentionally damaging 
the climate using 
ensemble forecast and all 
CoCiP configurations

Flight optimisation using 
nominal weather forecast 
and CoCiP configuration

Flight optimisation using 
nominal weather forecast 
and CoCiP configuration

Select the best trajectory 
for which the risk of 
unintentionally damaging 
the climate is below a 
given tolerance level

Risk-informed strategy
 

One route,
multiple forecasts

Is the risk of 
unintentionally damaging 
the climate below a given 
tolerance level?

Fly the cost climate-optimal route Fly the cost-optimal route

Risk-optimised strategy
 

Multiple routes,
multiple forecasts

Does such a trajectory 
exist?

Yes NoNoYes

Figure 1. Flowchart of the flight planning process for the three contrail avoidance strategies described. The single forecast pictures indicate

nominal estimations with no uncertainties integrated, while the ensemble forecast pictures indicate that uncertainties are taken into account.

The pictures are adapted from https://www.ecmwf.int/en/about/media-centre/focus/2017/fact-sheet-ensemble-weather-forecasting.

4

https://doi.org/10.5194/jecats-2026-2
Preprint. Discussion started: 12 February 2026
c© Author(s) 2026. CC BY 4.0 License.



easily adaptable to existing flight planning processes. We name this strategy the risk-informed strategy, corresponding to the

first risk-aware strategy described in this study.

The proposed cost climate-optimal route in this strategy relies entirely on the nominal CoCiP configuration and on the95

deterministic weather forecast. However, given the chaotic behaviour of the atmosphere, numerical weather forecasts are often

composed of an ensemble-based prediction system, which consists of an ensemble of forecasts generated by perturbing initial

conditions. Assuming that all these forecasts are equally probable, and using one or another of the available forecasts as the

nominal forecast to optimise the trajectory can lead to very different cost climate-optimal routes. To circumvent this issue,

weather uncertainties can be integrated directly into the flight optimisation. Simorgh et al. (2024b) included the uncertainty100

on the predicted climate impact that stems from the uncertainty in weather prediction directly into the cost function of their

optimisation. Here, we propose an alternative method and optimise a given flightpath for all the ensemble members of the

weather forecast, providing multiple different trajectories (Fig. 1, risk-optimised strategy). The decision of which route to

select out of the different possibilities consists of choosing the route with the highest average climate benefit amongst those for

which the risk of unintentionally damaging the climate is below a given threshold. By choosing such a route, we guarantee that105

the risk is lower than the given threshold while the predicted potential for climate benefit is maximum. While this strategy is

the most efficient way of minimising the risk, it requires either substantial modifications to existing flight planning processes,

which may take some time, or be time expensive, which is not an option in day-to-day operations. We name this strategy the

risk-optimised strategy, corresponding to the second risk-aware strategy described in this study.

These contrail avoidance strategies rely on the knowledge of the state of the weather at the time when flight planning occurs.110

This means that the strategies are based on forecasts available prior to departure, not on reanalysed meteorological data that

incorporate later observations. In the following, the two risk-aware strategies are investigated to understand how integrating

the risk of unintentionally damaging the climate during contrail avoidance can affect its benefits, compared to the risk-unaware

strategy.

3 Datasets and tools115

3.1 Flight data

We consider in this study the flights that connect the busiest airports of Western Europe (EGLL, EHAM, EDDF, and LFPG),

with those of Eastern North America (KJFK, KEWR, and KORD), as depicted in Fig. 2 (see also Table 1 for a description of

the airports). We only consider transatlantic flights because the traffic is much less congested and constrained above the North

Atlantic Ocean than over Europe or North America, while being still very high. Moreover, contrails are more likely to form120

and persist above the North Atlantic Ocean than other neighbouring regions (Teoh et al., 2024a). We select only the flights that

took off on the 5th, the 15th, and the 25th of March 2024, June 2024, September 2024, and December 2024, in order to reduce

computational cost. The days were chosen at random in order to sample each season equally and to account for the different

potential formation and evolution mechanisms of contrails that depend on the weather pattern (Teoh et al., 2022).
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EGLL
EHAM

LFPG EDDF

KJFK
KEWRKORD

Figure 2. Location of the airports considered in the study. The shortest routes connecting the airports for transatlantic flights are shown.

Basemap plotted using Cartopy 0.22.0 and sourced from Natural Earth.

Table 1. List of the airports considered in this study.

ICAO code Airport name City, country

EGLL Heathrow Airport London, UK

EHAM Schiphol Airport Amsterdam, the Netherlands

EDDF Frankfurt Airport Frankfurt, Germany

LFPG Charles-de-Gaulle Airport Paris, France

KJFK John-F.-Kennedy Airport New York, USA

KEWR Liberty Airport Newark, USA

KORD O’Hare Airport Chicago, USA

The data for this subset of flights was retrieved from the FlightRadar24 database (FlightRadar24, 2022). It consists of a pair125

of departure and arrival airports and times, which allows for the screening described above, as well as the ICAO code of the

aircraft type. In total, the subset is composed of 1747 flights, divided into 886 westbound flights and 861 eastbound flights.

Amongst these flights, 389 took off in March, 487 in June, 482 in September, and 389 in December.

3.2 Weather forecasts

Most studies that investigated operational flight planning including climate costs used reanalysed meteorological data (e.g.,130

Simorgh et al., 2023, 2024b; Martín Frías et al., 2024), such as the ERA5 reanalysis product (Soci et al., 2024). These products

are constructed using observations of the atmosphere both before and after the time of a given reanalysis. In operational

conditions, observations made after the current time are not available, and flight planners only have access to weather forecasts.

To simulate near-operational conditions, we use weather forecasts from the operational archive of the Integrated Forecasting

System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The IFS developed by the ECMWF135

is a state-of-the-art numerical weather prediction model used for global weather forecasting (ECMWF, 2024b) recognised by
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the scientific community as one of the best in the world. The forecasts are provided with a native resolution of 0.1°×0.1° on

the horizontal and 137 model levels, but we use a resolution degraded to 0.25°×0.25° and 37 levels interpolated on regular

pressure levels to reduce memory usage. At cruise altitudes, the available pressure levels are 150, 200, 250, 300, and 400 hPa,

corresponding respectively to about 13.6, 11.8, 10.4, 9.2, and 7.2 km, or 44600, 38700, 34000, 30100, and 23600 feet. For a140

given flight, the forecast used is the latest one available before departure time, that started at 00 or 12 UTC. The forecast lead

time, corresponding to the time between the initial conditions of the forecast and departure, therefore varies between 0 and

12 hours. In fully operational conditions, the lead time would be higher, as a forecast is released a few hours after the time of

the initial conditions. Previous studies showed that the higher the lead time, the less likely ISSRs are correctly predicted (von

Bonhorst et al., 2025), with the ISSR location often being shifted in space or time rather than being absent (Dean et al., 2025).145

We leave the analysis of the dependence of contrail avoidance strategies on forecast lead time for future work.

The deterministic (or control) forecast is calculated by running the model with unperturbed initial conditions, and provides

a trajectory of the atmospheric state over a period of a few days after the time of the initial conditions. However, taking

advantage of the ensemble of perturbed weather forecasts rather than only the deterministic forecast has a significant potential

to improve the modelling of ISSRs and upper tropospheric humidity (Hanst et al., 2025). We use ensemble prediction system150

(EPS) developed by the ECMWF, which is composed of 50 perturbed forecasts (ECMWF, 2024a). The deterministic forecast

and all 50 perturbed forecasts are considered equally probable and are produced and available at the same spatial and temporal

resolutions. In this study, we do not use the deterministic forecast provided by the ECMWF, reducing the number of members

of the ensemble from 51 to 50. As all the forecasts are considered equally probable, we arbitrarily fix the nominal forecast to be

the first ensemble member. This nominal forecast will be the one used to optimise flights in the risk-unaware and risk-informed155

contrail avoidance strategies.

The humidity field of weather forecasts is of first-order importance for predicting the formation and persistence of contrails

(Schumann, 1996; Kärcher, 2018). However, when compared with in situ humidity measurements made within the IAGOS

research program (Petzold et al., 2015; Boulanger et al., 2018), this field presents significant deviations that hinder the predic-

tion of the formation and persistence of contrails (e.g., Reutter et al., 2020; Gierens et al., 2020; Sausen et al., 2024; Hofer160

et al., 2024; Hildebrandt et al., 2025). Multiple studies proposed a correction for the humidity field of the ERA5 reanalysis

(e.g., Teoh et al., 2022; Platt et al., 2024; Wolf et al., 2025; Wang et al., 2025) In this study, we adopt the humidity correction

described by Teoh et al. (2024a). Above a given threshold, relative humidity w.r.t. ice is exponentially boosted, with boosting

coefficients that depend on latitude. Although the correction was derived for the reanalysis data, is not re-tuned for the forecast

data because the resolution of the forecast we use is the same as that of the reanalysis.165

3.3 Aircraft performances, emissions, and climate impact

The performances of aircraft are estimated using the Base of Aircraft Data version 3.15 (BADA3) as provided by EUROCON-

TROL (EUROCONTROL, 2019). BADA describes changes in aircraft state using a total energy model approach (Nuic et al.,

2010; Poles et al., 2010). It provides a framework to accurately estimate the thrust and fuel consumption of aircraft.
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The total climate impact of an individual flight is quantified using the efficacy-weighted Global Warming Potential over 100170

years (EGWP100) CO2-equivalence metric. This metric was shown to be a suitable metric, to the same extent as the Average

Temperature Response over 100 years (ATR100), to quantify and compare the climate impact of the different climate forcers

induced by aviation (Megill et al., 2024; Borella et al., 2024). EGWP100 is preferred to ATR100 because it directly derives from

the GWP100 metric, which is currently used to report emissions within the United Nations Framework Convention on Climate

Change (UNFCCC, 1995, 2019), and there is no strong evidence suggesting that a change of metric is deemed necessary.175

The species taken into account to calculate the climate impact of individual flights are the emitted CO2, H2O, and NOx,

as well as the formed contrails (EASA, 2020). The direct and indirect climate effects of aerosols are neglected in the study,

because the magnitudes and signs of these forcings are highly uncertain (Lee et al., 2021). The total climate impact in terms of

EGWP100, denoted CLIMATE (in tCO2e), is calculated from the sum of the contributions from each species:

CLIMATE = ECO2 + EGWP100NOx ·ENOx + EGWP100H2O ·EH2O + EGWP100AiC ·EFAiC (1)180

where EX is the emitted mass of species X (in tons of X), where X stands for CO2, NOx, or H2O. EGWP100X is the

EGWP100 value of the species X (in tCO2e per tons of X), EFAiC is the energy forcing of the aircraft-induced cloudiness

(AiC), i.e., contrails (in J; Teoh et al., 2020), and EGWP100AiC is the EGWP100 value of 1 J originating from contrails (in

tCO2e.J−1).

The values of ECO2 , ENOx, and EH2O are flight-dependent. The fuel is assumed to be Jet A-1 for all aircraft, such that185

the emission index of CO2 is EICO2 = 3.159 kgCO2 .kg−1
fuel and that of H2O is EIH2O = 1.23 kgH2O.kg−1

fuel (Wilkerson et al.,

2010; Teoh et al., 2024b). The emissions of NOx are calculated using the Boeing Fuel Flow Method 2 model (DuBois and

Paynter, 2006). In this study, we use constant EGWP100 values of NOx and H2O. Following Lee et al. (2021) (their Table 5),

we fix EGWP100NOx = 114 tCO2e.tN−1 (with 1 tN = 0.304 tNOx) and EGWP100H2O = 0.059 tCO2.tH2O−1. However,

the EGWP100 of NOx and H2O are not constant in space and time, but depend on e.g., the location of the emission, the190

weather pattern, the chemical background conditions (Grewe and Stenke, 2008; Köhler et al., 2013; Frömming et al., 2021).

In particular, H2O emitted in the troposphere has no significant climate impact, contrarily to that emitted in the stratosphere

(Forster et al., 2003). The constant factors used for EGWP100NOx and EGWP100H2O average these dependencies over the

entire aviation sector.

The energy forcing of contrails, EFAiC, is calculated using CoCiP, a Lagrangian model that simulates the formation, evolu-195

tion, and radiative impact of contrail cirrus on flight segments based on aircraft emissions and atmospheric conditions (Schu-

mann, 2012). It accounts for processes such as ice crystal formation, sedimentation, dispersion, and radiative transfer, en-

abling the estimation of contrail energy forcing along a flight trajectory. The model requires non-volatile particulate matter

(nvPM) emissions along the aircraft trajectory as an input. These are estimated using the ICAO Aircraft Emissions Databank

(EASA, 2025). For this study, we use the CoCiP version that was adapted for Python in the pycontrails package, version200

0.54.6 (Shapiro et al., 2025). The nominal predicted energy forcing of contrails is estimated using the default parameters of

pycontrails and the nominal weather forecast.
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We use the GWP100 of emitting 1 J of contrails calculated by Borella et al. (2024) using the OSCAR model (Gasser

et al., 2017), with GWP100AiC = 8.5× 10−13 tCO2e.J−1. This value is scaled by the climate efficacy of contrails, set to 0.37

(Borella et al., 2024), so that EGWP100AiC is 3.1×10−13 tCO2e.J−1. We emphasise that the estimate of the climate efficacy205

of contrails is associated with a very significant uncertainty, as reaffirmed by Bickel et al. (2025). However, as this uncertainty

is not weather-related, or at the very least cannot be quantified at the local level, we do not consider it in this study, and consider

the climate efficacy of contrails to be the same for all flights.

Instead of estimating only a nominal predicted energy forcing from CoCiP, we consider an ensemble of CoCiP predictions

of the contrail energy forcing that sample parametric uncertainties of the model. The ensemble is built by varying seven key210

parameters within their plausible ranges through a Monte Carlo approach and estimating the corresponding energy forcings

(Platt et al., 2024). The parameters are the initial wake vortex depth, the wind shear enhancement exponent, the sedimentation

impact factor, the scaling factors for shortwave and longwave radiation, a scaling factor for the number emission index of

nvPM, and the habit weight mixtures. An in-depth physical description of these parameters has been made by Schumann et al.

(2012) and Schumann (2012). From the range of each parameter, we generate 70 different configurations using a Monte Carlo215

approach (10 times the number of varied parameters), in addition to the nominal configuration. For each flight trajectory, CoCiP

is run with these 71 configurations, resulting in a distribution of predicted contrail energy forcing values. This approach allows

us to propagate the uncertainty of each parameter into an uncertainty for the contrail energy forcing. Such an uncertainty is

hereinafter referred to as the CoCiP-based uncertainty, with the associated CoCiP-based variability.

Following the same Monte Carlo approach, we can also estimate the uncertainty that stems from the weather forecast,220

by calculating the predicted climate impact of contrails for each of the 50 perturbed forecasts. The resulting uncertainty is

hereinafter referred to as the weather-based uncertainty, with the associated weather-based variability. To take into account

both the CoCiP-based and the weather-based uncertainties, we also calculate a joint uncertainty that corresponds to the total

potential climate benefit calculated using all the 71 CoCiP configurations for all the 50 weather forecast ensemble members,

resulting in 3550 estimates for each flight. The associated variability is hereinafter referred to as the joint variability. The225

average predicted climate impact of contrails refers to the average of all the estimates of the Monte Carlo process.

3.4 Flight planning and optimisation

The full 4D trajectories of the flights are not available from the FlightRadar24 database available to us, and must therefore be

reconstructed. Similarly, the alternative routes that would lead to contrail avoidance must be created. To this end, we adopt in

this study a flight planning approach and optimise trajectories taking into account the weather, the aircraft performance and230

fuel requirements, the flight duration, as well as its climate impact.

One of the main objective of flight planning is to minimise the operating cost of an aircraft. For a given aircraft, this can

be roughly approximated by a linear function of flight time and fuel consumption. The flight can also be given a climate cost

noted CLIMATE (Eq. 1). The total cost function to minimise is therefore:

COST = ϕ0 + ϕt ·TIME +ϕf ·FUEL +ϕc ·CLIMATE (2)235
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where COST quantifies the costs of the flight for the airline (in USD), TIME is the flight time of the aircraft (in s), and FUEL is

the fuel consumption (in kg). The ϕx coefficients correspond to the conversion factors between physical and monetary units. ϕ0

quantifies to the fixed costs (in USD) of a flight but since it is constant, it has no impact on the minimisation of the cost function.

Thus, it is arbitrarily set to ϕ0 = 0 USD. We fix the cost of fuel ϕf to 0.51 USD.kg−1, and that of time ϕt to 0.51 USD.s−1.

While these values are realistic (Yamashita et al., 2020), we emphasise that the actual cost of the flight has no importance in240

our work, and that only the relative weights of each contribution are impactful. The cost of climate impact ϕc depends on the

the routing strategy. If the climate impact is not taken into account, as it is currently done in operational flight planning, ϕc is

set to 0 USD.tCO2e−1, and the resulting cost-optimal route is called the default route. On the contrary, the alternative route

is determined by setting ϕc to a positive non-zero value of 10 USD.tCO2e−1, to determine a cost climate-optimal route. This

value can be lowered to reduce the relative importance of climate in the cost function, or increased to increase it.245

The optimisation tool we use for this study is FlightOptima, a software that evolved from that described by Boucher et al.

(2023). FlightOptima finds the optimal route between two points, minimising the cost function defined in Eq. 2. We account

for basic ATC rules by imposing that westbound flights cruise at odd levels (i.e., 31000 ft, 33000 ft, 35000 ft, etc.), and that

eastbound flights cruise at even levels (i.e., 30000 ft, 32000 ft, 34000 ft, etc.). Moreover, we impose that aircraft cannot execute

more than one climb or descent step every 400 km. However, the aircraft flies in free routing on the horizontal plane, with no250

ATC constraint. For the purpose of this study, we impose the speed schedule of aircraft, such that they are flying at constant

Mach number during cruise. Specific implementation details of FlightOptima are proprietary and cannot be disclosed due to its

intellectual property status. We emphasise that we do not investigate in this study the feasibility and potential gains of contrail

avoidance, but the decision-making linked to the risks of unintentionally damaging the climate when flying alternative routes.

For the purpose of the optimisation process, the energy forcing of contrails is determined using the gridded version of255

CoCiP, CoCiPGrid (Engberg et al., 2025), which allows to estimate the predicted climate impact of an aircraft that would

fly in a specific gridbox. The horizontal resolution of the model is the same as that of the weather data, and the vertical grid

corresponds to all the flyable flight levels (that is, both odd and even levels). Moreover, only warming contrails are considered

during the optimisation process, as to avoid the rerouting of flights to create cooling contrails. The full impact of contrails,

cooling and warming, is taken into account in the results presented in this study. If an alternative route would have a total260

predicted climate impact higher than the default route, typically because cooling contrails formed on the default route, the

alternative route is overriden by the default route and no rerouting option is possible.

4 CoCiP- and weather-based variability for two case studies

In this section, we investigate the variability of the predicted climate impact of contrails using two specific flights of the flight

data subset, called flights A and B. They were selected because they have both a high predicted climate impact and similar265

fuel consumption, while their associated uncertainties are very different. The cost-optimal and cost climate-optimal routes are

both calculated using the nominal weather forecast and nominal CoCiP configuration. By estimating the risk of unintentionally

damaging the climate during rerouting, the risk-unaware and risk-informed strategies are compared.
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4.1 Description of the default and alternative routes

Flight A flown from New York (KJFK) to London (EGLL) departed at 00:51 UTC on 5 March 2024 and was carried out by a270

Boeing 777-300ER aircraft. From this data and from the weather forecast operational archive, the trajectory is reconstructed by

minimising operating costs (Fig. 3). The trajectory follows the jet stream without deviating too much from the orthodromic path

(i.e., the shortest route), while changing once its cruising altitude as it gets lighter. In total, the aircraft consumed 47.7 t(fuel)

and the predicted nominal climate impact of the flight, calculated using from the nominal weather forecast and nominal CoCiP

configuration, was 288 tCO2e, amongst which contrails contributed 128 tCO2e. This is because the aircraft flies within a275

region prone to highly-warming contrail formation (red patches on Fig. 3). An alternative route is calculated by minimising

total costs, including both operating costs and climate costs (Fig. 3). The alternative trajectory, called rerouting A, avoids the

highly-warming contrail formation region by flying below. The rest of the trajectory is almost identical to the default route.

We emphasise that this avoidance is the most optimal avoidance given the conditions described in Section 3. When flying the

alternative route, the aircraft consumes more fuel with a total of 48.2 t(fuel), representing an increase of 1.0% compared to the280

default route, because the flight deviates from its cost-optimal route. However, the flight time is slightly lower by 15 s, but this

reduction is insignificant compared to the total flightime of 6 hours and 3 minutes. Most importantly, the total predicted climate

impact is reduced by 43.2% to 164 tCO2e. The contribution from contrails is reduced by 98.6% to 2 tCO2e, confirming that

the cost-climate optimised flight avoids the regions prone to highly-warming contrail formation.

Flight B flown from London (EGLL) to Newark (KEWR) departed at 15:51 UTC on 15 December 2024 and was carried out285

by a Boeing 767-300ER aircraft. As the flight is westbound, it faces the dominant winds. As a consequence, the cost-optimal

trajectory avoids the strongest headwinds while again following as close as possible the shortest route. The flight duration is

also longer than for flight A by about 1 hour and 15 minutes. Just like flight A, the aircraft climbs during its journey as it gets

lighter. During its journey, the aircraft consumed 34.8 t(fuel) and its predicted nominal climate impact was 275 tCO2e, contrails

being responsible for 165 tCO2e. The most warming contrails are predicted to be formed around halfway through the flight.290

The region prone to highly-warming contrail formation extends vertically on multiple flight levels and is roughly orthogonal to

the flight trajectory, making it difficult to avoid. The alternative trajectory, called rerouting B, avoids the region by shifting to

the north. This wide horizontal avoidance increases the flight duration by 0.6%, or 160 s, compared to flying the default route.

However, as the flight level is still optimum, the increase in fuel consumption is lower than for rerouting A, at 0.3%, for a total

consumption of 34.9 t(fuel). The reduction in total climate impact is similar to that of rerouting A, as the total predicted climate295

impact of rerouting B is 124 tCO2e, representing a 54.9% decrease. The corresponding contrail climate impact is reduced by

93.3%, down to 11 tCO2e.

Flights A and B have similar characteristics and fuel consumption, and using nominal prediction of the climate impact of the

formed contrails, the potential reduction in total climate impact of each individual flight is also similar, at about 50%. The total

predicted climate benefit for flight A is 125 tCO2e, while it is 151 tCO2e for flight B, indicating a potential major opportunity300

for the reduction of climate impact of these flights at a very limited cost. If the risk-unaware contrail avoidance strategy is
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(a) Default and alternative flightplans for flight A
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(b) Default and alternative flightplans for flight B

Shortest
Cost-optimal  flight B
Cost climate-optimal  flight B

0 1000 2000 3000 4000 5000
Distance [km]

30000

34000

38000

42000

A
lti

tu
de

 [f
t]

3 2 1 0 1 2 3
Potential contrail energy forcing [J / m flown] 1e9

Figure 3. Horizontal and vertical flight plans of the default cost-optimal route (blue lines) and alternative cost climate-optimal route (green

lines) for (a) flight A and (b) flight B. Colors indicate the predicted potential contrail energy forcing (in J/m flown) calculated by CoCiPGrid,

with the arrow field depicting the winds. The level and timestamp of the color shade and arrow field are those of the aircraft. Basemap plotted

using Cartopy 0.22.0 and sourced from Natural Earth.
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Figure 4. (a) CoCiP-based, (b) weather-based, and (c) joint variability of the total predicted climate benefit (in tCO2e, EGWP100) for two

flights between a cost-optimal route and a cost climate-optimal route. The red stars indicate nominal total predicted climate benefit for the

two reroutings.

adopted, the decision-making is reduced to ensuring that the climate benefit is positive, as the maximum acceptable costs of

avoidance are already included in the optimisation process.

4.2 Variability of the predicted climate benefit

The CoCiP-based, weather-based, and joint variability of the predicted climate benefit are estimated for both flights. The 71305

configurations of CoCiP, as well as the 50 ensemble members of the weather forecast, are used as inputs of the Monte-Carlo

process. We recall that both the cost-optimal and the cost climate-optimal routes are calculated using the nominal weather

forecast and CoCiP configuration.

The CoCiP-based variability of the predicted climate benefit ranges from 88 to 163 tCO2e for flight A, representing a relative

difference to the nominal estimate between −30 and 30%, and for flight B ranges from 119 to 217 tCO2e, with a corresponding310

relative range of −21 to 44% (Fig. 4a). The nominal estimate is for both flights close to the median and the average of the

Monte Carlo ensemble, respectively equal to 125, 124, and 125 tCO2e for flight A, and 151, 155, and 159 tCO2e for flight B.

For flight A, the variability in the estimation mainly originates from the parameter controlling the enhancement of wind shear,
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and to a lesser extent to that controlling the enhancement of nvPM emissions (not shown). Moreover, the parameter controlling

the enhancement of longwave radiative forcing plays a slight role. For flight B, the nominal estimate is strongly sensitive to the315

parameter controlling the enhancement of nvPM emissions, but shows no strong dependence on any other parameter.

The weather-based variability is significantly higher than the CoCiP-based one (Fig. 4b). For flight A, the estimate can be

reduced by 58% or increased by 73% compared to the nominal estimate, depending on the ensemble member. For flight B,

the lowest estimate of climate benefit becomes negative, with a corresponding decrease of 239% compared to the nominal

estimate. This implies that if the actual weather was close to that of the ensemble member leading to this low estimate, flying320

the alternative route would damage the climate. This is in fact the case for 21 ensemble members out of 50, indicating that

flying the alternative route rather than the default one would damage the climate in 42% of the weather scenarios. Moreover,

the average and median values can be very different from the nominal estimate of the total potential climate benefit. Contrarily

to the CoCiP-based variability, where the nominal value is calculated from the selection of central estimates for each parameter,

the nominal value estimated for the weather forecasts does not originate from the selection of a ‘central’ weather forecast. As325

all the 50 forecasts are considered to be equally probable, there is no best guess, and the nominal ensemble member is chosen

arbitrarily. This can therefore lead to nominal estimates that are very different from the median or average estimates, as it is

the case for flight B.

The distribution of the predicted climate benefit considering the joint variability is similar to that considering only the

weather-based variability for both flights (Fig. 4c). The conclusions are therefore similar: for flight A, the nominal predicted330

climate benefit and the average and median values calculated from all the estimates are similar, and all these estimates are

positive. For flight B however, 40.3% of the estimates of predicted climate benefit are negative, although the nominal benefit

is positive and high. Moreover, the nominal benefit and the average and median benefits are very different, the latter two being

close 25 tCO2e.

The joint variability quantifies the distribution of potential climate benefit when a flight is rerouted when considering uncer-335

tainties in predicting the climate impact of contrails, and can be used to inform decision-making on contrail avoidance. When

the variability is not estimated, decision-making is reduced to ensuring that the nominal benefit is positive so that the rerouting

is beneficial for the climate. We refer to this strategy as the risk-unaware avoidance strategy.

When the joint variability is calculated, the risk of unintentionally damaging the climate can be estimated, corresponding

to the proportion of estimates of total predicted climate benefit that are negative. For flight A (resp. B), this estimated risk is340

therefore of 0% (resp. 40.3%) if the aircraft flown the alternative route. Providing this value for decision-making is key, in

particular for a no-regret avoidance policy for which it is better to do nothing rather than mistakenly damage the climate. If the

risk-unaware avoidance strategy was adopted, both flights A and B would be rerouted, although there would be an, unquantified,

significant risk of damaging for flight B. If the risk-informed avoidance strategy was adopted, flight A would still be rerouted,

but flight B would likely not, in particular in the context of a no-regret avoidance policy. The average climate benefit would345

therefore be lower, but the confidence in the success of each individual rerouting would be significantly improved.
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Figure 5. Additional fuel consumption needed to reroute the flight (in %) against nominal predicted climate benefit (in tCO2e, EGWP100)

for the 641 reroutings. Colors indicate estimated risk of unintentionally damaging the climate due to the misprediction of contrail forcing (in

%).

5 Risk-informed avoidance strategy applied to a small fleet

In this section, the risk of unintentionally damaging the climate is analysed for the 1747 transatlantic flights distributed across

the seasons of 2024. In total, these flights consumed 71,579 t(fuel), and 1364 formed persistent contrails amongst which 1067

formed warming ones. The total predicted climate impact of the formed warming contrails is 54,755 tCO2e, while that of all350

the persistent contrails is 52,414 tCO2e, showing the small contributions of cooling contrails. In total, the 1747 flights are

predicted to have warmed the climate by 287,956 tCO2e, with contrails contributing to 18% of the total climate impact, in line

with previous assessments (Teoh et al., 2024a; Martín Frías et al., 2024).

Applying the risk-unaware avoidance strategy, all the flights for which an alternative route with positive total predicted

climate benefit exists are rerouted, corresponding to 672 flights or 38% of the total number of flights. This number is lower355

than the number of flights forming warming contrails, because the flight planning tool does not minimise the climate impact

but the cost including the climate impact, such that flights forming low-warming contrails are not rerouted. The total fuel

consumption increases by 0.14% (99 t(fuel)), representing an average of 0.35% (0.15 t(fuel)) for the rerouted flights. The

predicted reduction of the total climate impact is 17% (49,141 tCO2e), or 23% (73 tCO2e) on average for a rerouted flight.

The contribution from contrails is overall reduced by 95% (49,540 tCO2e). These significant reductions are expected, since the360

optimisation was conceived to minimise the climate impact and additional fuel consumption, and that it was previously shown

that this minimisation could be done with a limited cost increase (e.g., Simorgh and Soler, 2025; Zengerling et al., 2024).

For each rerouted flight, the risk of unintentionally damaging the climate is estimated (Fig. 5). 24% of the reroutings

(164 flights) present no risk of damaging the climate, complying with a no-regret avoidance policy. For the other rerout-

ings, the risk can be as high as 98%. However, the level of estimated risk relates to the nominal predicted climate benefit,365
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Figure 6. Average predicted climate benefit against nominal predicted climate benefit (both in tCO2e, EGWP100) for the 641 reroutings.

Colors indicate the level of risk associated with each rerouting (in %).

such that avoiding the formation of highly warming contrails is often low-risk, high-benefit. The corresponding cost-optimal

trajectory can be characterised as ‘big hits’. The reroutings associated with these high nominal predicted climate benefit are

also correlated to a higher additional fuel consumption, because the corresponding cost-optimal flights are characterised by a

crossing of an often large highly-warming contrail-forming region. The alternative route therefore takes a significant detour

to avoid this region, such that the additional fuel consumption is high, and the predicted climate benefit is high. Because of370

the long detour, the risk of unintentionally damaging the climate associated with the weather-based variability is lower. This is

because ice supersaturated regions are globally well predicted by weather forecasts, but these are often slightly shifted in space

or time compared to the actual location of the region (Dean et al., 2025). Taking a long detour avoids the forecasted region

in all the members of the ensemble. These results indicate that, while risks of unintentionally damaging the climate should be

taken into account in contrail avoidance strategies, ‘big hits’ can still be avoided with a relatively low-level risk.375

In addition to estimating the risk of unintentionally damaging the climate, calculating the variability of the predicted climate

benefit for each rerouting makes it possible to derive an average predicted climate benefit rather than a nominal one. The

average values is a better predictor of the potential benefit than the nominal value, as the latter is estimated using nominal

conditions corresponding to an arbitrary ensemble member of the weather forecast. As expected, the average value is globally

similar to the nominal value, following the 1:1 line (Fig. 6). However, the average value can be significantly lower than the380

nominal one, and below 0 in some cases. These strong deviations are correlated to high risk levels, especially for low nominal

predicted climate benefits. For high nominal predicted climate benefits, although the average value can be lower than the

nominal value, the benefit is always substantial and the risk is in most cases close to 0%. This again indicates that ‘big hits’ can

be avoided with a limited risk of unintentionally damaging the climate, and that the expected climate benefit is not too different

to the nominal predicted climate benefit.385
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Figure 7. Reduction in number of rerouted flights (red line), average predicted climate benefit (blue line), and additional fuel consumption

(green line), of a risk-informed avoidance strategy compared to the risk-unaware avoidance strategy (black line), as a function of the risk

tolerance level (in %).

By adopting the risk-unaware avoidance strategy, there is a significant risk of unintentionally damaging the climate for

multiple potential reroutings. On the contrary, adopting the risk-informed avoidance strategy allows to use the calculated

variability to confine this risk below a given risk tolerance level. The no-regret avoidance policy is adopted if the tolerance

level is set to 0%. As expected, the number of flights that would be rerouted decreases with decreasing risk tolerance level

(Fig. 7). When adopting a no-regret avoidance policy, the number of rerouted flights is reduced by 76% compared to adopting390

the risk-unaware avoidance strategy. The average predicted climate benefit is in this case reduced by 38%, such that the total

average predicted climate impact for the entire 1747 flights is reduced by 9%. The lower benefit compared to the risk-unaware

avoidance strategy, within which the total average predicted climate impact is reduced by 14%, is a trade-off with an increased

confidence in the fact that each individual rerouting does actually benefit the climate. By relaxing the risk tolerance level

from 0% to for example 5%, the decision-making consists of rerouting flights for which the risk of unintentionally damaging395

the climate is below 5%. In this case, 303 flights are rerouted for an average predicted climate benefit of 35,192 tCO2e,

representing a reduction compared to the risk-unaware avoidance scenario in 55% of the number of rerouted flights and in

13% of the average predicted climate benefit. As expected, the additional fuel consumption reduces similarly to the number

of rerouted flights, because flights are not rerouted anymore. The reduction lies between the reduction in number of rerouted

flights and that of average predicted climate benefit because the most risky reroutings are likely consuming less additional400

fuel than the less risky ones (see Fig. 5), and they also have a near-insignificant role on the average predicted climate benefit.

The average predicted climate benefit is slightly higher for risk-informed strategies than for risk-unaware strategies because

reroutings that are on average damaging the climate are not rerouted anymore.
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6 Optimising the risks during the flight planning process

In this section, we investigate how the risk-optimised strategy can be used to both increase the confidence that single reroutings405

will not unintentionally damage the climate, as for the risk-informed avoidance strategy, while avoiding the large decrease in

potential climate benefit seen when adopting a no-regret avoidance policy for the risk-informed avoidance strategy. To decrease

computational costs, this section relies only on the weather-based uncertainty, but the qualitative conclusions are not affected

when using the joint uncertainty instead.

First, the risk-optimised avoidance strategy is pictured using the two flights from the previously described case study (Fig. 8).410

For both flights, the cost-optimal route is weakly sensitive to the selected ensemble member, such that the 50 cost-optimal

routes are very similar. However, the 50 cost climate-optimal routes can be very different. For flight A, the differences are

mostly concentrated on the altitude descent needed to avoid the warming contrail-forming region, indicating the uncertainty in

predicting the altitude of this region. For flight B, the different routes are much more spread out, as expected from the larger

weather forecasts variability for flight B than for flight A. Three clusters of routes can be identified, one avoiding the main415

warming contrail-forming region by the south, one by the north, and one by flying below.

The weather-based variability is then computed for the 50 trajectories (Fig. 9). The envelope around the average benefit

quantifies the range of predicted climate impact of the flight from the 50 ensemble members of the weather forecast. For flight

A, the variability in the predicted climate benefit is similar for all trajectories. This is also the case for the additional fuel

consumption needed to fly the alternative route compared to the default route, which is roughly increasing with increasing420

average. This is because for low average benefits, the trajectory avoids warming contrail-forming regions by flying very close

to them, such that the additional fuel consumption is low. However, in most of the ensemble members, this route leads to the

formation of a warming contrail, because the region is predicted to be slightly shifted in space or time, such that the route

that was predicted to be highly beneficial for the climate in one member leads to lower benefits in other members. It is the

other way around for high average benefits, whereby the trajectory widely avoids the contrail-forming regions. The decision of425

which alternative route to consider given a risk tolerance level consists of choosing the route with the highest average climate

benefit amongst those for which the 5th percentile, if the risk tolerance level is set to 5%, is positive. By choosing such a route,

we both guarantee that the risk of unintentionally damaging the climate is lower than 5%, and that the route has the highest

predicted potential for climate benefit. For flight A, this corresponds to the route on the very right of the plot (Fig. 9a).

For flight B, three regimes can be observed (Fig. 9b), roughly corresponding to the three clusters mentioned above (Fig. 8b).430

The first one groups routes that have a small climate benefit and a small envelope. These routes are mostly located on the left

of the plot, and are associated with low additional fuel consumptions. They correspond to routes that are very similar to the

default route, with almost no deviation and no average climate benefit. The second regime groups routes with an intermediate

average climate benefit, a wider envelope than for the first group, but a significant higher additional fuel consumption, globally

located in the middle of the plot. Finally, the routes on the right side of the plot are those with the highest potential for climate435

benefit and, at the same time, they are the only routes for which the 5th quantile is positive. For flight B, the best route
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(a) Default and alternative flightplans for flight A for the 50 ensemble members
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(b) Default and alternative flightplans for flight B for the 50 ensemble members
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Figure 8. Same as Fig. 3 but with the optimisation ran for the 50 ensemble members of the weather forecast for both cost-optimal routes

(thin blue lines) and cost climate-optimal routes (thin green lines). The variations in cost-optimal routes can hardly be seen as they are almost

all stacked. Basemap plotted using Cartopy 0.22.0 and sourced from Natural Earth.
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Figure 9. Weather-based variability of the predicted climate benefit (in tCO2e, EGWP100) for the 50 cost climate-optimal routes determined

from the 50 ensemble weather forecast members. The statistics shown are the average (red line), the 5th quantile (dashed red line), and the

mininum and maximum values (orange shading). The additional fuel consumption (in kg(fuel)) needed to fly the trajectory compared to the

cost-optimal route is also shown (blue line).

again corresponds to that on the right of the plot (Fig. 9b). However, we emphasise that high average climate benefits are not

necessarily correlated with low risks.

The potential benefits of adopting the risk-optimised avoidance strategy are compared to that adopting the risk-informed

avoidance strategy, using the risk-unware avoidance strategy as a reference (Fig. 10). The average predicted climate benefit440

is much higher for the risk-optimised strategy than for the risk-informed one. It is also higher than the risk-unaware strategy

for all the risk tolerance levels, increasing the benefit by 52% for a no-regret avoidance policy which corresponds to the 0%

risk tolerance level. This is because the alternative route is chosen amongst 50 possibilities rather than only one, allowing

flexibility in the choice of route. When the risk tolerance level decreases, the selected cost climate-optimal route can change

so as to increase the confidence in the rerouting. In this case, the average predicted climate benefit is decreased but the flight445

is still deviated to take a cost climate-optimal route. This is shown by the higher number of rerouted flights, increased by 57%

compared to the risk-unaware strategy when adopting a no-regret avoidance policy. On the contrary, the flight would simply

fly the cost-optimal route rather than being rerouted if the risk-informed avoidance strategy were to be adopted. Adopting

such a strategy and a no-regret avoidance policy leads to a reduction of the number of rerouted flights by 65% compared to

the risk-unaware strategy, and of the average climate benefit by 24%. In total, 238 flights would be rerouted by adopting the450
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Figure 10. Reduction in number of rerouted flights (red lines), average predicted climate benefit (blue lines), and additional fuel consumption

(green lines), of a risk-informed (full lines) and a risk-optimised (dashed lines) avoidance strategy compared to the risk-unaware avoidance

strategy (black line), as a function of the risk tolerance level (in %). Only the weather forecasts variability is taken into account.

risk-informed avoidance strategy with a no-regret avoidance policy, for a total benefit of 31,144 tCO2e and an additional fuel

consumption of 56 t(fuel). For the risk-optimised avoidance strategy with a no-regret avoidance policy, 1058 flights would be

rerouted, leading to a total benefit of 62,153 tCO2e and an additional fuel consumption of 91 t(fuel).

7 Discussion and conclusion

Uncertainties in estimating the climate impact of contrails present a challenge for the targeted contrail avoidance strategy, as455

the nominal estimate of the climate impact can often be an outlier in the associated uncertainty distribution. This indicates that

the estimation of the climate benefit of reroutings must not be reduced to using only one deterministic modelling configuration.

Moreover, a rerouting that was initially predicted to benefit the climate could in fact cause unintended climate damage. The

risk of unintentionally damaging the climate for a given flight may be acceptable if avoiding contrails leads to a climate

benefit when averaged over a fleet. But initially, in a ramp-up phase of contrail avoidance, we may want to limit the risk for460

every single rerouting. Informed decision-making on whether to reroute a flight or not should therefore include the risk of

unintentionally damaging the climate (Niklaß et al., 2024). Such a consideration calls for flight planning systems to consider

as many uncertainties as scientifically possible and the potential negative outcome of reroutings.

To take the risk of unintentionally damaging the climate into account, two risk-aware strategies are investigated. The risk-

informed avoidance strategy consists of applying an analysis of the variability of the predicted climate benefit once cost-optimal465

and cost climate-optimal routes are calculated. If the cost climate-optimal route presents a risk of unintentionally damaging

the climate above a given threshold, the cost-optimal route is flown instead. The risk-optimised avoidance strategy includes

the uncertainty in the prediction of the climate impact of contrails directly in the flight planning process, but comes with a
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greater computational cost and operational constraints. For both strategies, an increased certainty in the positive outcome of

reroutings comes with a decreased potential in climate benefit, as less flights are rerouted. However, the most risky reroutings470

are also those associated with a low average benefit. The ‘big hits’, namely the reroutings which can lead to a substantial

climate benefit, are globally much less affected by risks of damaging the climate than other reroutings. When adopting the

risk-optimised avoidance strategy rather than the risk-informed one, the risk of unintentionally damaging the climate is directly

included when selecting the potential alternative route. Thus, the potential climate benefit is higher for the same risk tolerance

level, as many more flights can be rerouted. In any case, our study demonstrates that the risk of unintentionally damaging the475

climate should be integrated into the decision-making of contrail avoidance, in particular if a no-regret avoidance policy is to

be adopted.

The risk of unintentionally damaging the climate investigated in this study is calculated from the parametric uncertainty of

the CoCiP model (Schumann et al., 2012; Schumann, 2012; Platt et al., 2024) and from that of the weather forecasts of the IFS

(ECMWF, 2024a). Although we used a weather forecasting framework, which is similar to operational conditions compared480

to the commonly used reanalysis framework, many uncertainties on the prediction of the climate impact of contrails were not

considered. An important one is the value of the climate efficacy of contrails, which scales the predicted climate impact of

contrails. The best estimate is derived from only three independent studies, which each estimate being very different one from

another, at 0.21, 0.31 and 0.59 (Ponater et al., 2005; Rap et al., 2010; Bickel et al., 2025). Bickel et al. (2025) found that

their 0.21 estimate is associated with a statistical uncertainty between 0.10 and 0.32. This uncertainty has a major role on the485

potential benefit of the contrail avoidance strategy. The average predicted climate benefit for a risk-informed strategy, using a

5% risk tolerance, linearly depends on contrail efficacy, such that the advantage of contrail avoidance could be reduced by 80%

if contrail efficacy was equal to 0.10 on average (Fig. 11). However, the number of flights that should be rerouted, as well as

the additional fuel consumption needed to fly these deviations, are much less sensitive to contrail efficacy. This indicates that

not only the potential climate benefit, but also the efficiency of contrail avoidance both in terms of costs and complexity, is490

linearly dependent on contrail efficacy, emphasizing the need for additional work in this field.

Another source of uncertainty comes from the structural limitations of CoCiP, which were not considered in this study.

Compared to APCEMM, a model similar to CoCiP but with increased physical complexity (Fritz et al., 2020), CoCiP was

found to underpredict lifetime optical depth (Akhtar Martínez et al., 2025). Other models are also modelling the impact of

contrails (e.g., Yin et al., 2023). Simorgh et al. (2024a) conceptualised a way to plan flight routes under multiple estimates495

of contrail climate impact, but it is clear that these models need to be evaluated more systematically between themselves, and

most importantly against observations. In particular, in order for our risk-aware decision-making to be valid, the actual climate

benefit of a rerouting should lie within the estimated variability. This is still an open question that needs to be addressed. We

strongly advocate for additional research in evaluating and verifying CoCiP and similar models against observations, which

may be used for operational contrail avoidance. Until then, a first step would be to assess whether the climate benefit estimated500

using reanalysed meteorological data falls within the estimated variability, which will be the subject of future work.

Moreover, our study did not consider the variability in the climate impact of the emissions of NOx and H2O, which depends

on e.g., the location of the emission, weather pattern, and chemical background conditions. To account for these dependences,
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Figure 11. Reduction in number of rerouted flights (red line), average predicted climate benefit (blue line), and additional fuel consumption

(green line), of a risk-informed avoidance strategy (at a 5% risk tolerance level) with contrail efficacy varying between 0 and 0.7, compared

to the same situation with contrail efficacy fixed to 0.42 (black line).

van Manen and Grewe (2019) derived algorithmic climate change functions (aCCFs) from spatiotemporal variation of the

globally-average climate impact from a local emission (Grewe et al., 2014). These aCCFs had been used in multiple climate-505

friendly flight planning studies (e.g., Rao et al., 2022; Simorgh et al., 2023; Yin et al., 2023; Castino et al., 2024). We did

not use them in this study as the focus was on contrails to better illustrate our risk-aware framework, but future work could

include weather- and location-dependent formulations of the EGWP100 of NOx and H2O. In addition, there remains a need

for flight-by-flight models able to estimate the climate impact of aerosol interactions with radiation and clouds.

Better integrating the different sources of uncertainties in flight planning systems should be investigated for future opera-510

tional trials of contrail avoidance. Moreover, uncertainties should not only be considered for mitigation purposes, but more

generally when estimating the potential climate impact of contrails. Finally, we emphasise that the targeted contrail avoidance

strategy can provide a crucial additional time to the aviation sector to reduce its CO2 emissions, but should not be considered

a decarbonation strategy on its own.
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